Undistorted purely pseudo-Anosov groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal All Pseudo-anosov Subgroups of Mapping Class Groups

We construct the first known examples of nontrivial, normal, all pseudo-Anosov subgroups of mapping class groups of surfaces. Specifically, we construct such subgroups for the closed genus two surface and for the sphere with five or more punctures. Using the branched covering of the genus two surface over the sphere and results of Birman and Hilden, we show that if a projection of a reducible m...

متن کامل

Undistorted Solvable Linear Groups

We discuss distortion of solvable linear groups over a locally compact field and provide necessary and sufficient conditions for a subgroup to be undistorted when the field is of characteristic zero.

متن کامل

On Period Minimal Pseudo-anosov Braids

A family of period minimal pseudo-Anosov braids, one for each pair of Farey neighbors in (0, 1/2], is described.

متن کامل

Pseudo-Anosov dilatations and the Johnson filtration

Answering a question of Farb–Leininger–Margalit, we give explicit lower bounds for the dilatations of pseudo-Anosov mapping classes lying in the kth term of the Johnson filtration of the mapping class group.

متن کامل

A family of pseudo-Anosov maps

We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2018

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle-2018-0013